
Deep Learning for Data Science
DS 542

Lecture 20
Adversarial Examples and

Generative Adversarial Networks

Slides originally by Thomas Gardos.
Images from Understanding Deep Learning unless otherwise cited.

https://udlbook.com

Last Time:

● Contrastive Learning
○ Train useful encodings so similar inputs are similar and different inputs are different

● Vector Databases
○ Useful database for nearest neighbors and highest cosine similarity

● Retrieval Augmented Generation
○ Use encoding vectors to find related documents to improve context for generation

Today

● Adversarial inputs
● Generative adversarial networks (GANs)

Two Intriguing Properties of
Neural Networks

1. The output of a hidden layer is
better thought of as a vector space
than individually important vectors.

● No privileged basis.
● Next layer just takes linear

combinations anyway, so why
expect one of the outputs to be
special?

Intriguing properties of
neural networks (2014)

These are examples maximizing particular outputs.

https://arxiv.org/abs/1312.6199
https://arxiv.org/abs/1312.6199

Two Intriguing Properties of
Neural Networks

1. The output of a hidden layer is
better thought of as a vector space
than individually important vectors.

● No privileged basis.
● Next layer just takes linear

combinations anyway, so why
expect one of the outputs to be
special?

Intriguing properties of
neural networks (2014)

These are examples maximizing particular outputs.

https://arxiv.org/abs/1312.6199
https://arxiv.org/abs/1312.6199

Two Intriguing Properties of
Neural Networks

1. The output of a hidden layer is
better thought of as a vector space
than individually important vectors.

● No privileged basis.
● Next layer just takes linear

combinations anyway, so why
expect one of the outputs to be
special?

Intriguing properties of
neural networks (2014)

These are examples maximizing random directions.

https://arxiv.org/abs/1312.6199
https://arxiv.org/abs/1312.6199

Two Intriguing Properties of
Neural Networks

1. The output of a hidden layer is
better thought of as a vector space
than individually important vectors.

● No privileged basis.
● Next layer just takes linear

combinations anyway, so why
expect one of the outputs to be
special?

Intriguing properties of
neural networks (2014)

These are examples maximizing random directions.

https://arxiv.org/abs/1312.6199
https://arxiv.org/abs/1312.6199

Two Intriguing Properties of
Neural Networks

2. It is easy to fool neural networks
with small changes to the inputs.

● It was previously “obvious” that
you could tweak inputs to
change the outputs.

● It was a huge surprise that the
tweaks could be so small!

Intriguing properties of
neural networks (2014)

Ostrich?

https://arxiv.org/abs/1312.6199
https://arxiv.org/abs/1312.6199

Two Intriguing Properties of
Neural Networks

2. It is easy to fool neural networks
with small changes to the inputs.

● It was previously “obvious” that
you could tweak inputs to
change the outputs.

● It was a huge surprise that the
tweaks could be so small!

Intriguing properties of
neural networks (2014)

https://arxiv.org/abs/1312.6199
https://arxiv.org/abs/1312.6199

Two Intriguing Properties of
Neural Networks

2. It is easy to fool neural networks
with small changes to the inputs.

● It was previously “obvious” that
you could tweak inputs to
change the outputs.

● It was a huge surprise that the
tweaks could be so small!

● And these tweaks work
across models???

Intriguing properties of
neural networks (2014)

“In addition, the specific nature of these perturbations
is not a random artifact of learning: the same
perturbation can cause a different network, that was
trained on a different subset of the dataset, to
misclassify the same input.”

https://arxiv.org/abs/1312.6199
https://arxiv.org/abs/1312.6199

Takeaways

1. Neural network output space is not standardized to match our intuitions.
a. “No privileged basis”
b. Model ends up targeting vector spaces in the hidden layers?

2. Neural networks are surprisingly easy to fool with small input tweaks.
a. These tweaks are usually imperceptible for images.
b. They transfer across different data sets and models.
c. Possibly related to common vector space representations?

Intriguing properties of neural networks (2014)

https://arxiv.org/abs/1312.6199

Adversarial Training

Idea: use adversarial examples to train more
robust classifiers.

● Works in practice, at least for the kinds of
adversarial examples tested.

○ But not necessarily for other types
○ Will see soon this often comes at the cost

of accuracy for clean examples.

Robustness and Generalization via Generative
Adversarial Training (2021)

https://openaccess.thecvf.com/content/ICCV2021/papers/Poursaeed_Robustness_and_Generalization_via_Generative_Adversarial_Training_ICCV_2021_paper.pdf
https://openaccess.thecvf.com/content/ICCV2021/papers/Poursaeed_Robustness_and_Generalization_via_Generative_Adversarial_Training_ICCV_2021_paper.pdf

What makes a feature useful?

● Features can be useful if they are correlated with a target.
● If the correlation is negative, flip the sign.

Adversarial Examples Are Not Bugs, They Are Features (2019)

https://papers.nips.cc/paper_files/paper/2019/hash/e2c420d928d4bf8ce0ff2ec19b371514-Abstract.html

What makes a feature robust?

● A feature is robust if it stays useful under adversarial permutations.

Adversarial Examples Are Not Bugs, They Are Features (2019)

https://papers.nips.cc/paper_files/paper/2019/hash/e2c420d928d4bf8ce0ff2ec19b371514-Abstract.html

What about useful but non-robust features?

● Training will learn useful features even if they are not robust.

Adversarial Examples Are Not Bugs, They Are Features (2019)

https://papers.nips.cc/paper_files/paper/2019/hash/e2c420d928d4bf8ce0ff2ec19b371514-Abstract.html

Training Data can be Tweaked to be More or Less Robust

Adversarial Examples Are Not Bugs, They Are Features (2019)

https://papers.nips.cc/paper_files/paper/2019/hash/e2c420d928d4bf8ce0ff2ec19b371514-Abstract.html

Silly Training Tricks

Adversarial Examples Are Not Bugs, They Are Features (2019)

https://papers.nips.cc/paper_files/paper/2019/hash/e2c420d928d4bf8ce0ff2ec19b371514-Abstract.html

Takeaways
● Adversarial inputs take

advantage of real features in
the training data.

● Can try to remove these
“non-robust” features, but may
cost performance.

Adversarial Examples Are Not Bugs,
They Are Features (2019)

https://papers.nips.cc/paper_files/paper/2019/hash/e2c420d928d4bf8ce0ff2ec19b371514-Abstract.html
https://papers.nips.cc/paper_files/paper/2019/hash/e2c420d928d4bf8ce0ff2ec19b371514-Abstract.html

Generative Adversarial Networks

TLDR: use adversarial examples idea to build a really good image generator.

Possibly an evolutionary dead end, but still interesting because

● Clever training procedure
● First really good image generation technique
● Helped identify a lot of possible pitfalls and sometimes techniques to fix them

Imagine…

A function f that maps samples from normally distributed noise to images.

Can we train a function g that distinguishes the output of f from a real image?

Imagine…

A function f that maps samples from normally distributed noise to images.

Can we train a function g that distinguishes the output of f from a real image?

● If f is randomly initialized but untrained, then g should be easy to train.

Imagine…

A function f that maps samples from normally distributed noise to images.

Can we train a function g that distinguishes the output of f from a real image?

● If f is randomly initialized but untrained, then g should be easy to train.
● What if we then train f to fool g?

Generative Adversarial Networks

Discriminator

Generator

Train a generative model to try to fool a “discriminator” model.

fake

real

The generator turns noise into
an imitation of the data to try
to trick the discriminator.

© Alexander Amini and Ava Amini, MIT 6.S191: Introduction to Deep Learning, IntroToDeepLearning.com

The discriminator tries to
identify real data from fakes
created by the generator.

fake
real

GAN example

●

GAN example

Discriminator

GAN example

GAN example • Keep repeating till the
discriminator does no better
than random chance

Trained to completion

28

o z: uniform latent variable
o x: samples according to a (green solid)

generative distribution
o black dotted curve: real data distribution
o blue dashed curve: discriminator

I. Goodfellow et al., “Generative Adversarial Nets,” 2014

GAN cost function

Discriminator uses standard cross entropy loss (see Section 5.4 – binary classification loss): :

GAN cost function
Discriminator uses standard cross entropy loss (see Section 5.4 – binary classification loss):

We can separate into two summations that separately index over the generated
samples and the real samples.

30

GAN loss function

31

GAN loss function

32

GAN loss function

33

GAN cost function
Discriminator uses standard cross entropy loss:

Discriminator: generated samples, y = 0, real examples, y = 1:

Generator loss: make generated samples more likely under discriminator (i.e. make discriminator loss larger)

substituted the generator function
for the generated sample

34

GAN Cost function

35

GAN Cost function

discriminator loss:

negated generator loss:

Generator
does not
need
access to
real
examples.

GAN Training Flow Pseudo Python

for c_gan_iter in range(n_gan_iters): # GAN Iterations

 # Run generator to produce synthesized data
 x_syn = generator(z, theta)

 # Update/train the discriminator
 phi = update_discriminator(x_real, x_syn, n_iter_discrim, phi)

 # Update/train the generator
 theta = update_generator(z, theta, n_iter_gen, phi)

Convergence Proof Theory

Generative Adversarial Nets (2014)

https://arxiv.org/abs/1406.2661

Convergence Practice

oThe solution is the Nash equilibrium
o It lays at a saddle point
o Is inherently unstable

Nash equilibrium

In game theory, the Nash equilibrium, named after the
mathematician John Nash, is the most common way to define the
solution of a non-cooperative game involving two or more
players.

…each player is assumed to know the equilibrium strategies of
the other players, and no one has anything to gain by changing
only one's own strategy. Wikipedia

One
dimension is
discriminator
parameter.
Other is
generator
parameter.

https://en.wikipedia.org/wiki/Nash_equilibrium

Deep Convolutional (DC) GAN

Radford et al, “Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks.”, 2015

● Early GAN specialized in image generation

DC GAN Results

Trained on a faces dataset. Trained on ImageNet dataset. Trained on LSUN dataset.

The LSUN classification dataset
contains 10 scene categories, such
as dining room, bedroom, chicken,
outdoor church, and so on.

41

Common Failures with GANs

Mode Dropping: Only represent a
subset of the training distribution.

Mode Collapse: Extreme case
where the generator mostly ignores
the latent variable and collapses all
samples to a few points

GAN Performance and Distribution
Distance

Summary of lengthy analysis in §15.2.1 “Analysis of GAN loss function”
Can be rewritten in terms of dissimilarities between generated and real
probability distributions.
Two important takeaways:
Quality: Generated samples need to occur where real samples are
Coverage: Where there is concentrations of real samples, there should be
good representation from generated samples

We can conclude that:
(i) the GAN loss can be interpreted in terms of distances
between probability distributions and that

(ii) the gradient of this distance becomes zero when the
generated samples are too easy to distinguish from the
real examples.

We need a distance metric with better properties.

Wasserstein Distance (for continuous distributions)
Earth Mover’s Distance (for discrete probabilities)

45

See 15.2.4 Wasserstein distance for discrete distributions

Trick 1: Progressive growing

Train GAN to generate and discriminate 4x4 images

Keep weights from step (a), add layers to get
to/from 8x8 images and continue training GAN

Add layers to get to 16x16 and continue to train.

Repeat above steps to get to high resolution.

Wolf (2021), Kerras (2018)

Trick 2: Truncation

Interpolation Well-behaved latent space: Every latent variable z
should correspond to a plausible data example x and
smooth changes in z should correspond to smooth
changes in x.

StyleGAN (2019-2021)

GAN development focused on quality.

● Integrated styles into generation process.
● Analysis using more visually oriented evaluation

(Fréchet inception distance)
● Later models systematically worked on known

artifacts in the generation process.

A Style-Based Generator Architecture for Generative
Adversarial Networks (2019)

Analyzing and Improving the Image Quality of
StyleGAN (2019)

Alias-Free Generative Adversarial Networks (2021)

https://arxiv.org/abs/1812.04948
https://arxiv.org/abs/1812.04948
https://arxiv.org/abs/1912.04958
https://arxiv.org/abs/1912.04958
https://arxiv.org/abs/2106.12423

StyleGAN
Considered a very specific notion of
style…

● Coarse vs medium vs fine
styles

● Able to separate and remix
them separately

A Style-Based Generator
Architecture for Generative
Adversarial Networks (2019)

https://arxiv.org/abs/1812.04948
https://arxiv.org/abs/1812.04948
https://arxiv.org/abs/1812.04948

StyleGAN
Considered a very specific notion of
style…

● Coarse vs medium vs fine
styles

● Able to separate and remix
them separately

A Style-Based Generator
Architecture for Generative
Adversarial Networks (2019)

https://arxiv.org/abs/1812.04948
https://arxiv.org/abs/1812.04948
https://arxiv.org/abs/1812.04948

This Person Does
Not Exist

Images made with StyleGAN (still v1?)

https://thispersondoesnotexist.com/

https://thispersondoesnotexist.com/

CycleGAN
Goal:

● Generate G: X → Y such that
distribution of G(X) is
indistinguishable from
distribution of Y

○ But underconstrained.
○ What if input is ignored?

● Also generate F: Y → X
similarly and train F(G(x))=x
and G(F(y))=y

Unpaired Image-to-Image Translation
Using Cycle-Consistent Adversarial
Networks (2017)

Challenge: very few style transfer pairs for
training. Also very few Monet samples.

https://ieeexplore.ieee.org/document/8237506
https://ieeexplore.ieee.org/document/8237506
https://ieeexplore.ieee.org/document/8237506

Inverting the
Generator
Given the generator of a GAN and an
image, can we find its latent?

● This is pretty straightforward
with gradient descent.

○ More reliable than
training inverse?

● Why?
○ Because the latents tend

to be useful.
○ Similar latent ~ similar

image ~ similar
semantics.

Inverting The Generator Of A
Generative Adversarial Network (2016)

Use this to check if an image came out of a particular generator?

https://ieeexplore.ieee.org/document/8520899
https://ieeexplore.ieee.org/document/8520899

Takeaways

● Generative adversarial networks are surprisingly effective at image
generation.

○ If you can get them to converge.

○ If there is no mode collapse.

● This was one of the feet in the door to get generative image models
working.

○ Identified many challenges for later kinds of models to avoid.

○ Still active research here.

Unsupervised Learning (preview)

What kind of models do we build when we don’t have explicit targets?

● Contrastive learning? (sometimes has labels but not explicit targets)

● Generative adversarial networks

Coming up:

● Normalizing flows and variational auto-encoders

● Diffusion models

● Neural fields

Feedback?

