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Last Time: 

● Contrastive Learning
○ Train useful encodings so similar inputs are similar and different inputs are different

● Vector Databases
○ Useful database for nearest neighbors and highest cosine similarity

● Retrieval Augmented Generation
○ Use encoding vectors to find related documents to improve context for generation 



Today

● Adversarial inputs
● Generative adversarial networks (GANs)



Two Intriguing Properties of 
Neural Networks

1. The output of a hidden layer is 
better thought of as a vector space 
than individually important vectors.

● No privileged basis.
● Next layer just takes linear 

combinations anyway, so why 
expect one of the outputs to be 
special?

Intriguing properties of 
neural networks (2014)

These are examples maximizing particular outputs.

https://arxiv.org/abs/1312.6199
https://arxiv.org/abs/1312.6199
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Two Intriguing Properties of 
Neural Networks

2. It is easy to fool neural networks 
with small changes to the inputs.

● It was previously “obvious” that 
you could tweak inputs to 
change the outputs.

● It was a huge surprise that the 
tweaks could be so small!

Intriguing properties of 
neural networks (2014)
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Two Intriguing Properties of 
Neural Networks

2. It is easy to fool neural networks 
with small changes to the inputs.

● It was previously “obvious” that 
you could tweak inputs to 
change the outputs.

● It was a huge surprise that the 
tweaks could be so small!

● And these tweaks work 
across models???

Intriguing properties of 
neural networks (2014)

“In addition, the specific nature of these perturbations 
is not a random artifact of learning: the same 
perturbation can cause a different network, that was 
trained on a different subset of the dataset, to 
misclassify the same input.”

https://arxiv.org/abs/1312.6199
https://arxiv.org/abs/1312.6199


Takeaways

1. Neural network output space is not standardized to match our intuitions.
a. “No privileged basis”
b. Model ends up targeting vector spaces in the hidden layers?

2. Neural networks are surprisingly easy to fool with small input tweaks.
a. These tweaks are usually imperceptible for images.
b. They transfer across different data sets and models.
c. Possibly related to common vector space representations?

Intriguing properties of neural networks (2014)

https://arxiv.org/abs/1312.6199


Adversarial Training

Idea: use adversarial examples to train more 
robust classifiers.

● Works in practice, at least for the kinds of 
adversarial examples tested.

○ But not necessarily for other types
○ Will see soon this often comes at the cost 

of accuracy for clean examples.

Robustness and Generalization via Generative 
Adversarial Training (2021)

https://openaccess.thecvf.com/content/ICCV2021/papers/Poursaeed_Robustness_and_Generalization_via_Generative_Adversarial_Training_ICCV_2021_paper.pdf
https://openaccess.thecvf.com/content/ICCV2021/papers/Poursaeed_Robustness_and_Generalization_via_Generative_Adversarial_Training_ICCV_2021_paper.pdf


What makes a feature useful?

● Features can be useful if they are correlated with a target.
● If the correlation is negative, flip the sign.

Adversarial Examples Are Not Bugs, They Are Features (2019)

https://papers.nips.cc/paper_files/paper/2019/hash/e2c420d928d4bf8ce0ff2ec19b371514-Abstract.html


What makes a feature robust?

● A feature is robust if it stays useful under adversarial permutations.

Adversarial Examples Are Not Bugs, They Are Features (2019)

https://papers.nips.cc/paper_files/paper/2019/hash/e2c420d928d4bf8ce0ff2ec19b371514-Abstract.html


What about useful but non-robust features?

● Training will learn useful features even if they are not robust.

Adversarial Examples Are Not Bugs, They Are Features (2019)

https://papers.nips.cc/paper_files/paper/2019/hash/e2c420d928d4bf8ce0ff2ec19b371514-Abstract.html


Training Data can be Tweaked to be More or Less Robust

Adversarial Examples Are Not Bugs, They Are Features (2019)

https://papers.nips.cc/paper_files/paper/2019/hash/e2c420d928d4bf8ce0ff2ec19b371514-Abstract.html


Silly Training Tricks

Adversarial Examples Are Not Bugs, They Are Features (2019)

https://papers.nips.cc/paper_files/paper/2019/hash/e2c420d928d4bf8ce0ff2ec19b371514-Abstract.html


Takeaways
● Adversarial inputs take 

advantage of real features in 
the training data.

● Can try to remove these 
“non-robust” features, but may 
cost performance.

Adversarial Examples Are Not Bugs, 
They Are Features (2019)

https://papers.nips.cc/paper_files/paper/2019/hash/e2c420d928d4bf8ce0ff2ec19b371514-Abstract.html
https://papers.nips.cc/paper_files/paper/2019/hash/e2c420d928d4bf8ce0ff2ec19b371514-Abstract.html


Generative Adversarial Networks

TLDR: use adversarial examples idea to build a really good image generator.

Possibly an evolutionary dead end, but still interesting because

● Clever training procedure
● First really good image generation technique
● Helped identify a lot of possible pitfalls and sometimes techniques to fix them



Imagine…

A function f that maps samples from normally distributed noise to images.

Can we train a function g that distinguishes the output of f from a real image?
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Imagine…

A function f that maps samples from normally distributed noise to images.

Can we train a function g that distinguishes the output of f from a real image?

● If f is randomly initialized but untrained, then g should be easy to train.
● What if we then train f to fool g?



Generative Adversarial Networks

Discriminator

Generator

 

 

 

 

Train a generative model to try to fool a “discriminator” model.

fake

real

The generator turns noise into 
an imitation of the data to try 
to trick the discriminator.

© Alexander Amini and Ava Amini, MIT 6.S191: Introduction to Deep Learning, IntroToDeepLearning.com

The discriminator tries to 
identify real data from fakes 
created by the generator.

fake
real



GAN example 

●  
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GAN example • Keep repeating till the 
discriminator does no better 
than random chance



Trained to completion
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o z: uniform latent variable
o x: samples according to a (green solid) 

generative distribution
o black dotted curve: real data distribution
o blue dashed curve: discriminator

I. Goodfellow et al., “Generative Adversarial Nets,” 2014



GAN cost function

Discriminator uses standard cross entropy loss (see Section 5.4 – binary classification loss): :



GAN cost function
Discriminator uses standard cross entropy loss (see Section 5.4 – binary classification loss):

 

  

We can separate into two summations that separately index over the generated 
samples and the real samples.
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GAN loss function
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GAN loss function
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GAN loss function
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GAN cost function
Discriminator uses standard cross entropy loss:

Discriminator:  generated samples, y = 0,   real examples, y = 1:

Generator loss:  make generated samples more likely under discriminator (i.e. make discriminator loss larger)

substituted the generator function 
for the generated sample

34



GAN Cost function
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GAN Cost function

 

discriminator loss:

negated generator loss:

 

Generator 
does not 
need 
access to 
real 
examples.



GAN Training Flow Pseudo Python

for c_gan_iter in range(n_gan_iters):  # GAN Iterations

    # Run generator to produce synthesized data
    x_syn = generator(z, theta)

    # Update/train the discriminator
    phi = update_discriminator(x_real, x_syn, n_iter_discrim, phi)

    # Update/train the generator
    theta = update_generator(z, theta, n_iter_gen, phi)



Convergence Proof Theory

Generative Adversarial Nets (2014)

https://arxiv.org/abs/1406.2661


Convergence Practice

oThe solution is the Nash equilibrium
o It lays at a saddle point
o Is inherently unstable

Nash equilibrium

In game theory, the Nash equilibrium, named after the 
mathematician John Nash, is the most common way to define the 
solution of a non-cooperative game involving two or more 
players.

…each player is assumed to know the equilibrium strategies of 
the other players, and no one has anything to gain by changing 
only one's own strategy.   Wikipedia

One 
dimension is 
discriminator 
parameter. 
Other is 
generator 
parameter.

https://en.wikipedia.org/wiki/Nash_equilibrium


Deep Convolutional (DC) GAN

Radford et al, “Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks.”,  2015

● Early GAN specialized in image generation



DC GAN Results

Trained on a faces dataset. Trained on ImageNet dataset. Trained on LSUN dataset.

The LSUN classification dataset 
contains 10 scene categories, such 
as dining room, bedroom, chicken, 
outdoor church, and so on.

41



Common Failures with GANs

Mode Dropping: Only represent a 
subset of the training distribution.

Mode Collapse: Extreme case 
where the generator mostly ignores 
the latent variable and collapses all 
samples to a few points



GAN Performance and Distribution 
Distance

Summary of lengthy analysis in §15.2.1 “Analysis of GAN loss function”
Can be rewritten in terms of dissimilarities between generated and real 
probability distributions.
Two important takeaways:
Quality:  Generated samples need to occur where real samples are
Coverage: Where there is concentrations of real samples, there should be 
good representation from generated samples



We can conclude that:
(i) the GAN loss can be interpreted in terms of distances 
between probability distributions and that 

(ii) the gradient of this distance becomes zero when the 
generated samples are too easy to distinguish from the 
real examples.

We need a distance metric with better properties.



Wasserstein Distance (for continuous distributions)
Earth Mover’s Distance (for discrete probabilities)
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See 15.2.4 Wasserstein distance for discrete distributions



Trick 1:  Progressive growing

Train GAN to generate and discriminate 4x4 images

Keep weights from step (a), add layers to get 
to/from 8x8 images and continue training GAN

Add layers to get to 16x16 and continue to train.

Repeat above steps to get to high resolution.

Wolf (2021), Kerras (2018)



Trick 2:  Truncation

 



Interpolation Well-behaved latent space: Every latent variable z 
should correspond to a plausible data example x and 
smooth changes in z should correspond to smooth
changes in x.



StyleGAN (2019-2021)

GAN development focused on quality.

● Integrated styles into generation process.
● Analysis using more visually oriented evaluation 

(Fréchet inception distance)
● Later models systematically worked on known 

artifacts in the generation process.

A Style-Based Generator Architecture for Generative 
Adversarial Networks (2019)

Analyzing and Improving the Image Quality of 
StyleGAN (2019)

Alias-Free Generative Adversarial Networks (2021)

https://arxiv.org/abs/1812.04948
https://arxiv.org/abs/1812.04948
https://arxiv.org/abs/1912.04958
https://arxiv.org/abs/1912.04958
https://arxiv.org/abs/2106.12423


StyleGAN
Considered a very specific notion of 
style…

● Coarse vs medium vs fine 
styles

● Able to separate and remix 
them separately

A Style-Based Generator 
Architecture for Generative 
Adversarial Networks (2019)

https://arxiv.org/abs/1812.04948
https://arxiv.org/abs/1812.04948
https://arxiv.org/abs/1812.04948
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This Person Does 
Not Exist

Images made with StyleGAN (still v1?)

https://thispersondoesnotexist.com/

https://thispersondoesnotexist.com/


CycleGAN
Goal:

● Generate G: X → Y such that 
distribution of G(X) is 
indistinguishable from 
distribution of Y

○ But underconstrained.
○ What if input is ignored?

● Also generate F: Y → X 
similarly and train F(G(x))=x 
and G(F(y))=y

Unpaired Image-to-Image Translation 
Using Cycle-Consistent Adversarial 
Networks (2017)

Challenge: very few style transfer pairs for 
training. Also very few Monet samples.

https://ieeexplore.ieee.org/document/8237506
https://ieeexplore.ieee.org/document/8237506
https://ieeexplore.ieee.org/document/8237506


Inverting the 
Generator
Given the generator of a GAN and an 
image, can we find its latent?

● This is pretty straightforward 
with gradient descent.

○ More reliable than 
training inverse?

● Why?
○ Because the latents tend 

to be useful.
○ Similar latent ~ similar 

image ~ similar 
semantics.

Inverting The Generator Of A 
Generative Adversarial Network (2016)

Use this to check if an image came out of a particular generator?

https://ieeexplore.ieee.org/document/8520899
https://ieeexplore.ieee.org/document/8520899


Takeaways

● Generative adversarial networks are surprisingly effective at image 
generation.

○ If you can get them to converge.

○ If there is no mode collapse.

● This was one of the feet in the door to get generative image models 
working.

○ Identified many challenges for later kinds of models to avoid.

○ Still active research here.



Unsupervised Learning (preview)

What kind of models do we build when we don’t have explicit targets?

● Contrastive learning? (sometimes has labels but not explicit targets)

● Generative adversarial networks

Coming up:

● Normalizing flows and variational auto-encoders

● Diffusion models

● Neural fields



Feedback?


