BOSTON
UNIVERSITY

Lecture 20
Adversarial Examples and
Generative Adversarial Networks

Slides originally by Thomas Gardos.
Images from Understanding Deep Learning unless otherwise cited.

https://udlbook.com

Last Time:

e Contrastive Learning
o Train useful encodings so similar inputs are similar and different inputs are different

e Vector Databases
o Useful database for nearest neighbors and highest cosine similarity

e Retrieval Augmented Generation
o Use encoding vectors to find related documents to improve context for generation

Today

e Adversarial inputs
e Generative adversarial networks (GANSs)

Two Intriguing Properties of
Neural Networks

1. The output of a hidden layer is These are examples maximizing particular outputs.

better thought of as a vector space -

than individually important vectors. E[‘]
(a) Unit sensitive to lower round stroke. (b) Unit sensitive to upper round stroke, or

ivi [1 traight stroke.
e No privileged basis. ower straight stroke

e Next layer just takes linear

combinations anyway, so why (c) Unit senstive to left, upper round (d) Unit senstive to diagonal straight
expect one of the outputs to be stroke. stroke.

special? : : : - - . ,
Figure 1: An MNIST experiment. The figure shows images that maximize the activation of various units
(maximum stimulation in the natural basis direction). Images within each row share semantic properties.

Intriguing properties of
neural networks (2014)

https://arxiv.org/abs/1312.6199
https://arxiv.org/abs/1312.6199

Two Intriguing Properties of
Neural Networks

1. The output of a hidden layer is
better thought of as a vector space
than individually important vectors.

No privileged basis.

Next layer just takes linear
combinations anyway, so why
expect one of the outputs to be
special?

Intriguing properties of
neural networks (2014)

These are examples maximizing particular outputs.

Cutelsn MR
f* 2 e ! = i =

(a) Unit sensitive to white flowers. (b) Unit sensitive to postures.

(c) Unit senstive to round, spiky flowers. (d) Unit senstive to round green or yellow
objects.

Figure 3: Experiment performed on ImageNet. Images stimulating single unit most (maximum stimulation in
natural basis direction). Images within each row share many semantic properties.

https://arxiv.org/abs/1312.6199
https://arxiv.org/abs/1312.6199

Two Intriguing Properties of
Neural Networks

1. The output of a hidden layer is
better thought of as a vector space
than individually important vectors.

e No privileged basis.

e Next layer just takes linear
combinations anyway, so why
expect one of the outputs to be
special?

Intriguing properties of
neural networks (2014)

These are examples maximizing random directions.

BRSHEGERES EEEREIRFIFIEIEN

(a) Direction sensitive to upper straight (b) Direction sensitive to lower left loop.
stroke, or lower round stroke.

(c) Direction senstive to round top stroke. (d) Direction sensitive to right, upper
round stroke.

Figure 2: An MNIST experiment. The figure shows images that maximize the activations in a random direction
(maximum stimulation in a random basis). Images within each row share semantic properties.

https://arxiv.org/abs/1312.6199
https://arxiv.org/abs/1312.6199

Two Intriguing Properties of
Neural Networks

1. The output of a hidden layer is These are examples maximizing random directions.

better thought of as a vector space v _
'S Y,é : ’ﬁ ' 7 ‘%‘ e x - h\“ - .
®)\, l % v .* B
N WL s 4 AL Ee

than individually important vectors.
No privileged basis. (a) Direction sensitive to white, spread (b) Direction sensitive to white dogs.
Next layer just takes linear flowers.
combinations anyway, so why
expect one of the outputs to be
special?

(c) Direction sensitive to spread shapes. (d) Direction sensitive to dogs with brown
heads.

Figure 4: Experiment performed on ImageNet. Images giving rise to maximum activations in a random direc-
Intri qu in q prope rties of tion (maximum stimulation in a random basis). Images within each row share many semantic properties.

neural networks (2014)

https://arxiv.org/abs/1312.6199
https://arxiv.org/abs/1312.6199

Two Intriguing Properties of
Neural Networks

2. It is easy to fool neural networks
with small changes to the inputs.

e |t was previously “obvious” that
you could tweak inputs to
change the outputs.

e It was a huge surprise that the
tweaks could be so small!

Intriguing properties of
neural networks (2014)

Ostrich?

[s |
. g oal
(b)

Figure 5: Adversarial examples generated for AlexNet [9].(Left) is a correctly predicted sample, (center) dif-
ference between correct image, and image predicted incorrectly magnified by 10x (values shifted by 128 and
clamped), (right) adversarial example. All images in the right column are predicted to be an “ostrich, Struthio
camelus”. Average distortion based on 64 examples is 0.006508. Plase refer to http://goo.gl/huaGPb
for full resolution images. The examples are strictly randomly chosen. There is not any postselection involved.

https://arxiv.org/abs/1312.6199
https://arxiv.org/abs/1312.6199

Two Intriguing Properties of
Neural Networks

2. It is easy to fool neural networks
with small changes to the inputs.

e It was previously “obvious” that
you could tweak inputs to
change the outputs.

e It was a huge surprise that the
tweaks could be so small!

Intriguing properties of
neural networks (2014)

(®)

Figure 6: Adversarial examples for QuocNet [10]. A binary car classifier was trained on top of the last layer
features without fine-tuning. The randomly chosen examples on the left are recognized correctly as cars, while
the images in the middle are not recognized. The rightmost column is the magnified absolute value of the

difference between the two images.

https://arxiv.org/abs/1312.6199
https://arxiv.org/abs/1312.6199

Two Intriguing Properties of
Neural Networks

2. It is easy to fool neural networks
with small changes to the inputs.

e |t was previously “obvious” that
you could tweak inputs to
change the outputs.

e |t was a huge surprise that the
tweaks could be so small!

e And these tweaks work
across models???

Intriguing properties of
neural networks (2014)

“In addition, the specific nature of these perturbations
is not a random artifact of learning: the same
perturbation can cause a different network, that was
trained on a different subset of the dataset, to
misclassify the same input.”

https://arxiv.org/abs/1312.6199
https://arxiv.org/abs/1312.6199

Takeaways

1. Neural network output space is not standardized to match our intuitions.
a. “No privileged basis”
b. Model ends up targeting vector spaces in the hidden layers?

2. Neural networks are surprisingly easy to fool with small input tweaks.

a. These tweaks are usually imperceptible for images.
b. They transfer across different data sets and models.
c. Possibly related to common vector space representations?

Intriguing properties of neural networks (2014)

https://arxiv.org/abs/1312.6199

Adversarial Training

Idea: use adversarial examples to train more
robust classifiers.

e Works in practice, at least for the kinds of

adversarial examples tested.
o But not necessarily for other types
o Will see soon this often comes at the cost
of accuracy for clean examples.

Robustness and Generalization via Generative
Adversarial Training (2021)

Mapping
network
f

Latent z

FC
FC
FC
FC
FC
FC
FC

FC

<— B <— Noise

Forward path (clean) ¢
Forward path (adversarial) V

Gradient path (adversarial) A

target 7

https://openaccess.thecvf.com/content/ICCV2021/papers/Poursaeed_Robustness_and_Generalization_via_Generative_Adversarial_Training_ICCV_2021_paper.pdf
https://openaccess.thecvf.com/content/ICCV2021/papers/Poursaeed_Robustness_and_Generalization_via_Generative_Adversarial_Training_ICCV_2021_paper.pdf

What makes a feature useful?

e Features can be useful if they are correlated with a target.
e |[f the correlation is negative, flip the sign.

p-useful features: For a given distribution D, we call a feature f p-useful (o > 0) if it is correlated with
the true label in expectation, that is if

]E(x,y)ND[y f(x)] = p. (1)

Adversarial Examples Are Not Bugs, They Are Features (2019)

https://papers.nips.cc/paper_files/paper/2019/hash/e2c420d928d4bf8ce0ff2ec19b371514-Abstract.html

What makes a feature robust?

e Afeature is robust if it stays useful under adversarial permutations.

y-robustly useful features: Suppose we have a p-useful feature f (op(f) > 0). We refer to f as a
robust feature (formally a 7y-robustly useful feature for v > 0) if, under adversarial perturbation (for
some specified set of valid perturbations A), f remains y-useful. Formally, if we have that

i . > 1. 2
]E(x,y)ND 5e]IAl(fx)y f(x+(5) =Y (2)

Adversarial Examples Are Not Bugs, They Are Features (2019)

https://papers.nips.cc/paper_files/paper/2019/hash/e2c420d928d4bf8ce0ff2ec19b371514-Abstract.html

What about useful but non-robust features?

e Training will learn useful features even if they are not robust.

Useful, non-robust features: A useful, non-robust feature is a feature which is p-useful for some p
bounded away from zero, but is not a y-robust feature for any oy > 0. These features help with classi-
fication in the standard setting, but may hinder accuracy in the adversarial setting, as the correlation
with the label can be flipped.

Adversarial Examples Are Not Bugs, They Are Features (2019)

https://papers.nips.cc/paper_files/paper/2019/hash/e2c420d928d4bf8ce0ff2ec19b371514-Abstract.html

Training Data can be Tweaked to be More or Less Robust

Robust dataset

good standard accuracy
good robust accuracy

= =

Unmodified
test set

Training image \ good standard accuracy
bad robust accuracy

Non-robust dataset

Adversarial Examples Are Not Bugs, They Are Features (2019)

https://papers.nips.cc/paper_files/paper/2019/hash/e2c420d928d4bf8ce0ff2ec19b371514-Abstract.html

Silly Training Tricks

Training image Adversarial example Relabel as cat
towards “cat” _

Robust Features: dog Robust Features: dog
Non-Robust Features: dog Non-Robust Features: cat

good accuracy

Evaluate on
original test set

Adversarial Examples Are Not Bugs, They Are Features (2019)

https://papers.nips.cc/paper_files/paper/2019/hash/e2c420d928d4bf8ce0ff2ec19b371514-Abstract.html

Ta keawayS 100 B Std accuracy I Adv accuracy (£ =0.25)

e Adversarial inputs take 5
advantage of real features in
the training data.
e Can try to remove these 60
“non-robust” features, but may
cost performance.
40
20

Adversarial Examples Are Not Bugs Std Training Adv Training Std Training Std Training
They Are Features (2019) uslng.D gsing 2 using D using Dyr

Test Accuracy on D (%)

o

https://papers.nips.cc/paper_files/paper/2019/hash/e2c420d928d4bf8ce0ff2ec19b371514-Abstract.html
https://papers.nips.cc/paper_files/paper/2019/hash/e2c420d928d4bf8ce0ff2ec19b371514-Abstract.html

Generative Adversarial Networks

TLDR: use adversarial examples idea to build a really good image generator.

Possibly an evolutionary dead end, but still interesting because

e Clever training procedure
e First really good image generation technique
e Helped identify a lot of possible pitfalls and sometimes techniques to fix them

Imagine...

A function f that maps samples from normally distributed noise to images.

Can we train a function g that distinguishes the output of f from a real image?

Imagine...

A function f that maps samples from normally distributed noise to images.
Can we train a function g that distinguishes the output of f from a real image?

e If fis randomly initialized but untrained, then g should be easy to train.

Imagine...

A function f that maps samples from normally distributed noise to images.
Can we train a function g that distinguishes the output of f from a real image?

e If fis randomly initialized but untrained, then g should be easy to train.
e What if we then train f to fool g7

Generative Adversarial Networks

Train a generative model to try to fool a “discriminator” model.

The discriminator tries to
real identify real data from fakes

created by the generator.
The generator turns noise into X y 8

an imitation of the data to try
to trick the discriminator. fake [

y real [
Generator /

fake

© Alexander Amini and Ava Amini, MIT 6.5191: Introduction to Deep Learning, IntroToDeepLearning.com

GAN example

r; = glzj,0] = z; + 0

a) g =30 e We take examples from a
distribution (e.g. shifted
standard gaussian)

* We generate
, Zj, from a standard
gaussian and shift by 6.

* Train a classifier on the data

Data. » 1.0

GAN example

r; = glz,0] = z; + 0

a) 6 = 3.0 e Train the

* using logistic regression
— parameterized by ¢

— [
3 f[.’ qb} * as a binary classifier on
= the data
. real if f[-] = .5
©8 \fake if f[-] <

Data. = 1.0

GAN example

T =glz;,0| =2, +0

J
* Train the generator

a)”-@ o=30 b) 0=19 to update 0 in order
to increase the loss
- on the discriminator
L)
a - * Then train the
discriminator to
0.0 Yol | S L | decrease the loss

Data. 7 1.0 0.0 Data. 7

GAN example * Keep repeating till the
discriminator does no better

than random chance

T =glz;,0| =z, +0

J
a) 0 = 3.0 b) 0 =49 c) 0= 6.7
= |
GLJ 1
a
1.00.0 Data. r 1.C

Data. x 1.0 0.0 Data. =

Trained to completion

N N L4

.......

. -t N . o)
T
A 0. AN\ I\
(a) (b) () (d)
o z: uniform latent variable 4.1 Global Optimality of p; = paata
o x:samples according to a (green solid) We first consider the optimal discriminator D for any given generator G.

generative distribution
o black dotted curve: real data distribution

o blue dashed curve: discriminator Di(x) = Pdara()
pdata(w> +pg(w)

Proposition 1. For G fixed, the optimal discriminator D is

|. Goodfellow et al., “Generative Adversarial Nets,” 2014

GAN cost function

Discriminator uses standard cross entropy loss (see Section 5.4 — binary classification loss): :

¢ = arg;nin [Z —(1 — i) log |1 — sigf[x;, cb]]} — y;log [Sig[f[xqz, 0#]]}]

7

GAN cost function

Discriminator uses standard cross entropy loss (see Section 5.4 — binary classification loss):

¢ = arg;nin [Z —(1 =) log{l — siglf[x;, cb]]} — y;log {Sig[f[xi, cb]]}]

i
Generated samples, X;, y; = 0, and for real examples, x;, y; = 1:

A

¢ = argmin Z — log [1 — siglf] Z log [Slg X ‘lbﬂ}

S \ -

These are generated These are real samples
samplessoy; = 0 soy; =1

We can separate into two summations that separately index over the generated
samples and the real samples.

GAN loss function

Real
examples

Generated Real ‘:; Generated § Real
I | e [
S iscriminator -
Generator
Latent Generated 31 Probability

variable samples is real

GAN loss function

Real
examples

}_) Generated Real > f Generated 2 Real
S L — i
S iscriminator .
Generator
Latent N\ Generated 32 Probability
variable samples is real
s Generator loss, L[8]

~
-~

\“‘*--[Zj log [l—Sig[f[S[Zj’ '9]‘ (‘bm}

Generated samples x* = g[z, 0]
should be assigned high
probability by discriminator

GAN loss function

Generated samples x* should have low probability
Real examples x should have high probability

el |5 o (1=l 6] - 5 los sl 6]
examples Discriminator loss, L[]

}_) Generated Real > f Generated 2 Real
111 — i
S iscriminator .
Generator
Latent N\ Generated 33 Probability
variable samples is real
s Generator loss, L[8]

~
-~

\“‘*--[Zj log [l—Sig[f[S[Zj’ '9]‘ (‘bm}

Generated samples x* = g[z, 0]
should be assigned high
probability by discriminator

GAN cost function

Discriminator uses standard cross entropy loss:

@ = axgmin [Z —(1—y,) log | 1 — sigltlx;, ¢]]| - yi log|sietf:. qsn]]

7

Discriminator: generated samples,y =0, real examples,y=1:

qAb = argmin Z — log [1 — 81g] Z log [Slg Xis H}

¢ j

Generator loss: make generated samples more likely under discriminator (i e. make discriminator loss larger)

A A

¢, 0 =argmax| argmin Z—log[l—sig[f{g z;,0 } Zlog[&g Xi,]]}
g ¢ j ‘—y—’

substituted the generator function
for the generated sample

GAN Cost function

A

(}b, @ =argmax | argmin Z — log[l—sig[f[g[zj, 0], qﬁ]]} —Z log [Sig[f[xi, (b]]]

o .
¢ J
The discriminator parameters, ¢, are manipulated to minimize the loss function

The generator parameters, 8, are manipulated to maximize the loss function.

real

35
fake [
y real [l

fake

GAN Cost function

A A

@, 0 =argmax | argmin Z —log [1—sig[f[g z;,0 } Z log [Slg X, qb]]]

o .
¢ J
The discriminator parameters, ¢, are manipulated to minimize the loss function

The generator parameters, 8, are manipulated to maximize the loss function.

Can divide into two parts:
P Generator

. does not
discriminator loss: L[¢] = Z — log [1 — siglfg|z;, 0]] Zlog [Slg [£]x,]ﬂ need
access to
. y , real
examples.

negated generator loss: L[6] = Zlog [1 — siglf(g[z;, 6], ¢]ﬂ

The 2nd term is constant w.r.t. 6
(gradient aL/ae = 0) so we can drop it)

GAN Training Flow Pseudo Python

for c_gan_iter in range(n_gan_iters): # GAN lIterations

Run generator to produce synthesized data
X_syn = generator(z, theta)

Update/train the discriminator
phi = update_discriminator(x_real, x_syn, n_iter_discrim, phi)

Update/train the generator
theta = update generator(z, theta, n_iter_gen, phi)

Convergence Proof Theory

4.2 Convergence of Algorithm 1

Proposition 2. If G and D have enough capacity, and at each step of Algorithm 1, the discriminator
is allowed to reach its optimum given G, and p, is updated so as to improve the criterion

Exnpial108 D ()] + Eanp, [log(1 — Dg(x))]

then p, converges t0 Dyara

Generative Adversarial Nets (2014)

https://arxiv.org/abs/1406.2661

Convergence Practice

0 ¢

¢, 0 = argmax | argmin Z —log [1—sig[f[g[zj, 0], qb]]} —Z log [sig[f[xi, qb]]]

J

o The solution is the Nash equilibrium
o It lays at a saddle point
o Is inherently unstable

Nash equilibrium

In game theory, the Nash equilibrium, named after the
mathematician John Nash, is the most common way to define the
solution of a non-cooperative game involving two or more
players.

...each player is assumed to know the equilibrium strategies of
the other players, and no one has anything to gain by changing
only one's own strategy. Wikipedia

A BEAUTIFUL
Mllf\ID

One
dimension is
discriminator
parameter.
Otheris
generator
parameter.

https://en.wikipedia.org/wiki/Nash_equilibrium

Deep Convolutional (DC) GAN

® Early GAN specialized in image generation

Generator
61 x61x3
~100x1
Latent
variable 7 32x32x 128
16X 16 <256
8x8x 512
4x4x1021
e = T
Project and Fractional sigmoid
reshape convolution

Discriminator

32x32>128

*
xorx 16 x 16 x 256

{x8&x5H12

Ax A x 1024 Pr(real)
a lj1 x1
~ - e e
Serided dx4 sigmoid
convalution convolution

Radford et al, “Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks.”, 2015

DC GAN Results

Trained on a faces dataset. Trained on ImageNet dataset. Trained on LSUN dataset.

The LSUN classification dataset
contains 10 scene categories, such
as dining room, bedroom, chicken,
outdoor church, and so on.

Common Failures with GANs

Mode Dropping: Only represent a
subset of the training distribution.

Mode Collapse: Extreme case
where the generator mostly ignores
the latent variable and collapses all
samples to a few points

GAN Performance and Distribution
Distance

Pr(x*) + Pr(x)
2

Pr(x*) + Pr(x)
2

Dys [Pric) | Pro)] = 3Dis [Pre)

] + %DKL [P'r(x)

quality coverage
Summary of lengthy analysis in §15.2.1 “Analysis of GAN loss function”

Can be rewritten in terms of dissimilarities between generated and real
probability distributions.

Two important takeaways:
Quality: Generated samples need to occur where real samples are

Coverage: Where there is concentrations of real samples, there should be
good representation from generated samples

We can conclude that:

(i) the GAN loss can be interpreted in terms of distances
between probability distributions and that

(ii) the gradient of this distance becomes zero when the
generated samples are too easy to distinguish from the
real examples.

We need a distance metric with better properties.

Wasserstein Distance (for continuous distributions)
Earth Mover’s Distance (for discrete probabilities)

* The quantity of work required to transport the probability mass from
one distribution to create the other.

e Use linear programming to find an optimal “transport plan” that
minimizesZ P - |i — j|

Transport plan, P d) Distance, |i — j|

a)h

[l
8
e
”‘m

b) Index, 7
I
) I -
IH—’_’—h_V—H i Wasserstein distance
|] W~ — s
Index, j BE- =l

See 15.2.4 Wasserstein distance for discrete distributions

Trick 1: Progressive growing

ok
a) . M_.‘,\
ST

*g\ e i Train GAN to generate and discriminate 4x4 images

P ﬂ‘#

b) 0w)
® Keep weights from step (a), add layers to get
m— to/from 8x8 images and continue training GAN

Generator Discriminator

Wolf (2021), Kerras (2018)

Trick 2: Truncation

U_L'

* Only choose random values of latent
variables that are less than a threshold
T distance from the mean of the latent
variables.

L 0°¢

01

* Reduces variation but improves quality

L 90:_[,

70°0

. Well-behaved latent space: Every latent variable z
Interpolation

should correspond to a plausible data example x and
smooth changes in z should correspond to smooth
changesin x.

StyleGAN (2019-2021)

GAN development focused on quality.

e Integrated styles into generation process.
Analysis using more visually oriented evaluation
(Fréchet inception distance)

e Later models systematically worked on known
artifacts in the generation process.

A Style-Based Generator Architecture for Generative
Adversarial Networks (2019)

Analyzing and Improving the Image Quality of
StyleGAN (2019)

Alias-Free Generative Adversarial Networks (2021)

https://arxiv.org/abs/1812.04948
https://arxiv.org/abs/1812.04948
https://arxiv.org/abs/1912.04958
https://arxiv.org/abs/1912.04958
https://arxiv.org/abs/2106.12423

StyleGAN

Considered a very specific notion of
style...

e Coarse vs medium vs fine
styles

e Able to separate and remix
them separately

A Style-Based Generator
Architecture for Generative
Adversarial Networks (2019)

Source B

Coarse styles from source B

https://arxiv.org/abs/1812.04948
https://arxiv.org/abs/1812.04948
https://arxiv.org/abs/1812.04948

StyleGAN

Considered a very specific notion of
style...

e Coarse vs medium vs fine
styles

e Able to separate and remix
them separately

A Style-Based Generator
Architecture for Generative
Adversarial Networks (2019)

Source B

Middle styles from source B

Fine from B

https://arxiv.org/abs/1812.04948
https://arxiv.org/abs/1812.04948
https://arxiv.org/abs/1812.04948

This Person Does
Not Exist

Images made with StyleGAN (still v17?)

https://thispersondoesnotexist.com/

https://thispersondoesnotexist.com/

CyCI e G‘ ‘N ___Monet T Photos B Zebras T Horses Summer Winter
. H g — & i

Goal:

e Generate G: X — Y such that
distribution of G(X) is
indistinguishable from
distribution of Y

o But underconstrained.
o What if input is ignored?

e Alsogenerate F: Y — X
similarly and train F(G(x))=x
and G(F(y))=y

Photograph Van Gogh) Cezanne

Unpaired Image-to-Image Translation

Using Cycle-Consistent Adversarial
Networks (2017)

Challenge: very few style transfer pairs for
training. Also very few Monet samples.

https://ieeexplore.ieee.org/document/8237506
https://ieeexplore.ieee.org/document/8237506
https://ieeexplore.ieee.org/document/8237506

Inverting the
Generator

Given the generator of a GAN and an
image, can we find its latent?

This is pretty straightforward
with gradient descent.
o More reliable than
training inverse?
Why?
o Because the latents tend
to be useful.
o Similar latent ~ similar
image ~ similar
semantics.

Inverting The Generator Of A

Generative Adversarial Network (2016)

v G(z*) x i(z%) x
77 772217 7|22
7 7 4 CXd i e
L G e 8l LNE &
7 7 77 <]7? T @5 <
O 0 Ooo? 2oopmm? 3
22 SL2P T IT|22PT ¥
7 7 d BRI EEd EE
QO ooz’ pcom’ 7
2 2 2 2 g 02 2 g 0
G G G G
a) Uniform prior: b) Uniform prior: ¢) Normal prior: ¢) Normal prior:
None clipping None Regularisation

Figure 2: Reconstructions for MNIST: inverting a generator trained using a uniform prior (a-b) and
a normal prior (c-d). The original image, z is on the right, while the inverted image is on the left

G(z*).

Use this to check if an image came out of a particular generator?

https://ieeexplore.ieee.org/document/8520899
https://ieeexplore.ieee.org/document/8520899

Takeaways

o Generative adversarial networks are surprisingly effective at image
generation.

o If you can get them to converge.

o If there is no mode collapse.

e This was one of the feet in the door to get generative image models
working.

o ldentified many challenges for later kinds of models to avoid.

o Still active research here.

Unsupervised Learning (preview)

What kind of models do we build when we don’t have explicit targets?
o Contrastive learning? (sometimes has labels but not explicit targets)

e Generative adversarial networks

Coming up:
o Normalizing flows and variational auto-encoders
o Diffusion models

e Neural fields

Feedback?

